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Abstract
Dynamic Power Management (DPM) is a technique to reduce

power consumption of electronic systems by selectively shutting
down idle components. The quality of the shutdown control algo-
rithm (power management policy) mostly depends on the knowl-
edge of user behavior, which in many cases is initially unknown
or non-stationary. For this reason, DPM policies should be ca-
pable of adapting to changes in user behavior. In this paper, we
present a novel DPM scheme based on idle period clustering and
adaptive learning trees. We also provide a design guide for ap-
plying our technique to components with multiple sleep states.
Experimental results show that our technique outperforms other
advanced DPM schemes as well as simple time-out policies. The
proposed approach shows little deviation of efficiency for various
workloads having different characteristics, while other policies
show that their efficiency changes drastically depending on the
trace data characteristics. Furthermore, experimental evidence
indicates that our workload learning algorithm is stable and has
fast convergence.

1 Introduction
The importance of system-level low-power design techniques

has been increased by the widespread use of portable devices,
which have limited battery life time [2, 4, 7].Dynamic power
management(DPM) [1] is a system-level low power design tech-
nique aiming at controlling performance and power levels of dig-
ital circuits and systems, by exploiting the idleness of their com-
ponents. The heart ofDPM is a Power Manager(PM) which
monitors the overall system state and issues commands to con-
trol the power state of the system when it detects idleness. The
control algorithm implemented by thePM is called apower man-
agement policy. Adaptivity is one of the most important issues
in DPM because most external environments (user requests) are
non-stationary.

Three classes of power management policies have been pro-
posed in the past: time-out, predictive, and stochastic policies.
The fixed time-out policy shuts down the system after a fixed
amount of idle time [15]. Adaptive time-out policies are more
efficient because they change the time-out according to the pre-
vious history. In contrast with time-out policies, predictive tech-
niques do not wait for a time-out to expire, but shut down the
system as soon as it becomes idle if they predict that the idle
time will be long enough to amortize the cost of shutting down.

�This work was supported in part by MARCO.

Some predictive techniques are based on extensive off-line anal-
ysis of usage traces [8]. Adaptive prediction policies [3] over-
come this limitation by adopting an exponential average predic-
tion scheme. Both time-out and predictive policies have been
applied only to systems with a single sleep state. A stochastic
approach was proposed in [5] where general systems and user re-
quests were modeled as Markov chains. This approach provides
a polynomial-time exact solution for the search of optimal power
management policies under performance constraints. The main
drawback of this approach is the assumption that the Markov
model of the workload is stationary and known. This limitation
is addressed in [6], where adaptive Markov policies are investi-
gated. In [6], a look-up table is constructed which contains pre-
optimized stationary policies. Decisions are obtained by inter-
polation on the look-up table. The table is indexed by workload
parameters which are estimated online with a sliding window al-
gorithm. The main limitation of this adaptive technique is that it
is based on a fixed-time update rule that can be power-inefficient.
Furthermore, in some cases, neither the workload nor the system
can be modeled accurately by the Markov chains.

In this paper, we present a novel adaptive predictive method
applicable to systems (or components) with an arbitrary number
of sleep states. Our policy is based on a new dynamic data struc-
ture called anadaptive learning tree. Using the tree, we can ac-
curately predict the most appropriate low-power sleep state at the
start of an idle period. Also, we propose an enhanced scheme
which adopts a time-out filter for the purpose of eliminating very
short idle periods from being candidates for prediction with mi-
nor power penalty. We tested out the technique on the well-known
power management problem of hard disk spindown. Our exper-
iments, with different hard-disk drives and measured workloads,
show that our adaptive technique is robust and it consistently out-
performs time-outs and predictive policies, in terms of both power
savings and performance penalty.

2 Idle Period Grouping
In this section, we introduce the idle period clustering scheme

which is the base of our proposedDPM approach for a multi-
ple sleep-state system. A system can be abstracted as a two-state
finite-state machine which is in busy state when a service is per-
formed and it is in idle state otherwise. An idle period is de-
fined as the period from the time when the system enters the idle
state to the time when the system exits the idle state. Similarly,
busy periods are the time intervals spent in busy state. Thus, the
overall system behavior can be modeled as a time series of busy
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and idle periods. When an idle period is long enough to amor-
tize the shutdown cost, the system can be shut down for power
saving. For a system with a single sleep state, such as the one
analyzed in [3] we can define athreshold, which is the minimum
idle time required to reach the break-even point between shut-
down cost and power savings. For a multiple sleep state system,
we need as many thresholds as sleep states because each sleep
state has a different shutdown cost. Figure 1 illustrates the need
for multiple thresholds and the efficiency of multiple sleep states
compared to the single sleep state when the system workload is
known. Usually, shutting down to a deeper sleep state requires
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Figure 1. An example of system shutdown
with multiple sleep states

more transition time and power consumption (i.e., higher cost).
Energy consumption during the idle period can be calculated by
estimating the area under the line corresponding to the selected
sleep state. In Figure 1, the deeper sleep state is more efficient
during the first idle period, but the shallower sleep state is more
efficient during the second idle period. During the third idle pe-
riod, by selecting the deeper sleep state, severe delay overhead
and less power saving are observed. Finally, during the last idle
period, no sleep state is helpful because the idle period is too
short. From this example, it is obvious that multiple sleep states
and multiple thresholds are required for more efficientDPM.

Let n be the number of sleep states; then the total number of
power states in the system while it is idle isn+1 (i.e., all sleep
states plus thefully on state). LetP= fp0; p1; � � � ; png be the set
of power states. Then threshold values (one for each sleep state)
are determined based on the assumption that a deeper sleep state
offers lower power consumption at the price of higher transition
cost. For a given idle period,tidle, energy consumption,Ei by
selecting a power statepi , i = 0;1; � � � ;n, can be computed as
follows.

Ei = tdi � pdi + tui � pui +(tidle� tdi � tui)� pi (1)

Where,tdi is the transition time from idle state to power state
pi andtui is the transition time from power statepi to idle state.
Also, pdi and pui are the power consumption levels correspond-
ing to each transition andpi is the power consumption while the
system is in power statei. In our notation, power statepi is a
shallower sleep state than power statepi+1 (pi > pi+1) and power
state 0 (p0) is the idle state in which the system is not shut down.
Hence,Ei should be greater than or equal toEi+1 and the equal-
ity holds whentidle is the threshold between power statei and
power statei + 1. We can compute threshold values for every
i; i = 0;1; � � � ;n by equatingEi with Ei�1 and solving fortidle.
Let Ii be the threshold value between power statepi and pi+1.

Then

Ii =
(pdi+1� pi+1)� tdi+1+(pui+1� pi+1)� tui+1

pi � pi+1

�
(pdi � pi)� tdi +(pui � pi)� tui

pi � pi+1

(2)

The time axis can be partitioned inn+ 1 disjoint intervals,
bounded by the thresholds. We can then associate with a given
idle periodtidle the index of the power stateIG(tidle) giving the
best savings for that idle period:

IG(tidle) =

8<
:

0 if tidle < I0
i+1 if I i < tidle < Ii+1 f or 0� i < n
n if In < tidle

(3)

Thus, a sequence of idle periods can be transformed into a se-
quence of integers 0� IG(tidle) � n, which represent the best
power state that could be chosen for each idle period. Lets de-
note the sequence. Ifshas finite lengthl , it is denoted assl . Also,
si denotes theith value of the sequence ands0 is the most recent
event among allsi ’s. The optimal power state for an idle period
represented bysi is psi .

3 Adaptive Learning Tree
Predicting the values of a discrete event sequence is a funda-

mental problem in learning theory [11]. The idle period clustering
technique mentioned in Section 2 transforms the sequence of idle
periods into the sequence of discrete events. In other words, the
problem to be solved is “which value willIG(tidle) have in the
next idle period for the current sequencesl ?” By predicting the
next IG(tidle), the system can choose the most appropriate sleep
state. In previous studies, learning tree algorithms have been re-
ported to find rules from experience [12, 13, 16, 17]. These al-
gorithms are static in nature, and can be seen as techniques to
organize knowledge and drive inference. To be effective, our al-
gorithm must be highly dynamic, and be able to adapt rapidly to
changes in the workload.

The learning tree that we propose can be applied to binary as
well as multi-valued sequences. Idle periods are observed by the
PM and they are transformed into integersIG(tidle). This infor-
mation can be seen as a sequencesl . ThePM predicts the next
IG(tidle) for the givensl based on the current status of the learning
tree. The learning tree is updated as soon as the prediction result
is available.sl is updated by shift operation whenever a new idle
period is observed byPM such thatsi ! si+1 and the new value
is stored ass0. The basic assumption behind our algorithm is that
we can predict the future idle periods with high accuracy by ob-
serving idle periods in the recent past. Our approach has some
analogy with advanced branch prediction schemes widely used
in computer architectures to reduce the penalty of mispredicted
branches [14].

3.1 Basic Structure
An example of an adaptive learning tree is shown in Fig-

ure 2. The proposed adaptive learning tree consists of decision
nodes (circles), history branches (solid lines), prediction branches
(dashed lines), and leaf nodes (rectangles). The tree is levelized:
the top decision node corresponds tos0, nodes in the second
level correspond tos1 and so on. All leaf nodes are predic-
tions for the next idle period regardless of their ancestor levels.
Each leaf stores the Prediction Confidence Level (PCL). The
higher thePCL is, the higher the confidence is for a prediction.
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Figure 2. An adaptive learning tree (with two
sleep states)

Each decision node can have both history branches and predic-
tion branches, but the total number of branches is alwaysn, and
a prediction branch can only be used when the ancestor is a de-
cision node and the descendant is a leaf node. Each branch of
a decision node is associated with the index of a power state
IG(tidle) = f0;1; � � � ;ng. From left to right, they are denoted as
bi ; i = 0;1; � � � ;n regardless of their types.
3.2 Decision

A decision for a given sequence,sl is taken based on a path
matching procedure. Apath for a given sequence,sl is defined
as a series of decision nodes such that from the top node, we
recursively select a history branchbsi and move to the lower level
decision node connected tobsi . The recursion is terminated when
the bsi is a prediction branch or the level of the decision node
corresponds tosl�1. Path length (pl)is defined as the number of
decision nodes included in the path. While matching the path, the
leaf nodes connected to the decision node included in the path are
checked and the leaf node which has the highestPCL is selected.
When there are multiple leaf nodes which have the same highest
PCL, the leftmost leaf node is selected. After path matching, the
index of the selected leaf node becomes the prediction for the next
event. For example, in Figure 2, the path, “a! b! e” is matched
when thes2 = “01” and its path length is 2. After path matching,
the center leaf node of nodee is selected, thus the tree predicts
IG(tidle) = 1 for the next idle period and issues a command to
shut down the system to power state 1. Also, when thes2 = “00”
or s2 = “02”, the path, “a! b” is matched. Note that nodee is
not included in the path for these sequences any more. Thus, the
rightmost leaf node of nodeb is selected in this case. As shown
in this example,pl, the number of old events used in decision
is varied according to the given sequence. Also, two different
sequences (“00” and “02”) are classified in the same category and
can share the resources of the tree to reduce memory usage.
3.3 Learning

In conjunction with prediction, a learning process is needed
to maintain the accuracy of the prediction. Whenever an event
si occurs, the tree is updated to reflect the quality of prediction
made when the previous eventsi+1 occurred. When the predic-
tion is correct, the learning tree should be updated to increase the
possibility to choose the same leaf node for the given sequence.
In the reverse case, the reverse action should be performed. This
task is achieved by updating thePCL of the leaf nodes.PCL up-
date is controlled by a finite-state machine as shown in Figure 3
(the update rule is analogous to that employed in branch predic-
tion buffers for conditional branch prediction). When the predic-
tion is correct, thePCL state is changed to the higher state, in

the reverse situation, thePCL state is changed to the lower state.
And when it reaches either end state, it keeps the current state.
Thus, thePCL is an adaptive feature of the learning tree for non-
stationary event sequences. Learning process is more compli-
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Figure 3. PCL operation

cated when misprediction occurs, because decreasingPCL of the
selected node is insufficient. In other words, the adaptive learning
tree has insufficient information to distinguish the given sequence
from other sequences and thePCLof the leaf node which should
have been selected (desired leaf node) is too low. Thus, two addi-
tional procedures are performed. Let us denote the desired value
asdv= IG(tidle). First, to increase distinguishability, increase the
path length of the current path by replacing the leaf node on the
prediction branchbspl+1 connected to the last decision node in the
path with a new decision node. Second, to increase thePCLof the
desired leaf node, find all leaf nodes which are connected through
the prediction branch,bdv on the path and increase theirPCL. An
example of the updating procedure is shown in Figure 4. Suppose
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Figure 4. An example of learning for a pre-
diction miss

there are three different sequences such thatA= “20”, B= “21”
andC= “22” and the next event after sequenceA andB is 0, but
the next event after sequenceC is 1. The path “a! d” will be
matched for all those sequences in Figure 4 (a) and the learning
tree will predict 0 for every sequence. This prediction is correct
when the given sequence isA or B; it is wrong when the given se-
quence isC. Thus, it is necessary to distinguish sequenceC from
A andB. When this prediction miss occurs, first, thePCL of the
leftmost leaf node of noded is decreased. Then, the rightmost
leaf node of noded is replaced with a new decision node because
s1 = 2. The leaf nodes of the new decision node have the initial
PCLvalue (in this case, it is 1). Then, the second additional pro-
cedure is applied and the finalPCL of leaf nodes are as shown in
Figure 4. Due to these additional procedures, the adaptive learn-
ing tree grows in an unbalanced manner and this characteristic is
efficient for keeping it small and naturally determines the corre-
lation depth between the future event and old history depending
on the sequence characteristics.

4 Power Manager
As mentioned in Section 1, the Power Manager (PM) is the

heart ofDPM. Thus, the adaptive learning tree is implemented



within thePM as shown in Figure 5. In Figure 5, service requester
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(SR) is the external environment which triggers the system and
the service provider (SP) is the system itself which serves the
requests from service requester. The idle period grouper (IPG)
observesSPand extract idle periods. Then the idle interval for
the observed idle period is calculated and it is passed to the pre-
vious history buffer (PHB) and the tree handler.PHB stores
the observed idle sequencesl . Whenever a new event arrives,
it performs shift operation such thatsi ! si+1 and the new event
is stored ass0. Finally, the tree handler performs learning and
the predictor performs the decision process as mentioned in Sec-
tion 3.

Wakeup and miss correction
SPcan be waken up in two different ways. One is whenPM

detects a new service request. The other is whenSP stays in
power statepi longer thanIi � tui . The first case occurs when the
predicted idle interval is greater or equal to the actual idle inter-
val. And the second case occurs when the predicted idle interval
is less than the actual idle interval. The second case is a prediction
miss due to a conservative prediction. AfterSPis waken up,PM
monitors the system untilIn (maximum threshold). During this
period, if a new service request comes, theSPcan serve this re-
quest without wakeup penalty, thus the inefficiency in power sav-
ing is compensated by eliminating wake-up performance penalty.
Otherwise, thePM shuts down theSPto the deepest power state
to save more power. This feature enables the exploitation of very
long mispredicted idle periods.

Prediction filter
In many applications, the distribution of idle period intervals

shows L-shaped curve as mentioned in [3, 8] which represents
the ratio of very short idle periods is dominant in total idle peri-
ods distribution. Thus, the prediction quality for short idle periods
can play an important role in deciding overall prediction accuracy.
For this reason, fixed time-out policy is performed preceding the
actual prediction. In other words, the command predicted byPM
is not issued immediately, but the command issue is delayed for
a small amount of time (threshold of the fixed time-out policy) to
filter out very short idle periods. If a request is arrived during this
waiting period, the predicted command is canceled, thus only the
idle periods longer than the threshold can be used for shutdown.
The threshold value used for the fixed time-out policy is the min-
imum threshold,I0. Usually,I0 is small, thus the sacrifice to filter
out short idle periods is not a big penalty for power saving, but it
prevents excessively aggressive shutdown.

5 Experimental Results
We applied the proposed scheme to two different Hard Disk

Drives [5, 10] with the real trace data [9]. We chose two different
types of disk traces from [9] - one is the trace for swap purpose

IBM in [5]
State ∆T Power Threshold
active NA 2:5W NA
idle (p0) NA 1W NA
idleLP (p1) 40ms 0:8W 680ms
standby (p2) 2:2sec 0:3W 19088ms
sleep (p3) 6sec 0:1W 95600ms

Toshiba in [10]
active NA 2:5W NA
idle (p0) NA 0:9W NA
standby (p1) 1sec 0:3W 10667ms
sleep (p2) 3sec 0:1W 70000ms

Table 1. HDD specifications

only disk and the other is the trace for swap and user data disk.
Thus, the distributions of idle period length are different. Two dif-
ferent HDD specifications are shown in Table 1 with the threshold
values computed by the equation 2. We implemented a simulator
to estimate the performance of the proposed algorithm in terms of
power consumption, delay overhead, and energy efficiency. Also,
the simulator can simulate fixed time-out policies, thebest oracle
policy [6], and other predictive policies [3] for validation pur-
pose. The best oracle policy is an ideal policy which cannot be
implemented in practice because it assumes perfect knowledge
of all idle periods, and it always takes the best decision. For the
proposed approach, the size ofPHB is determined 20 bits, thus
the maximum path length of the adaptive learning tree was con-
strained to be less than or equal to 20. Since fixed time-out policy
and the prediction policy in [3] does not support multiple sleep
states, only the deepest sleep state is used for those policies.

The compared policies are: 1) best oracle (O1), 2) proposed
approach without filter (M1), 3) proposed approach with filter
(M2), 4) prediction policy in [3] with miss correction (H1), 5)
H1 with pre-wakeup (H2), 6) time-out policy with time-out value
= I0 (T1), 7) time-out policy with time-out value = 1sec(T2), and
8) time-out policy with threshold value that is used inH1 (T3).
O1 is the reference in comparison because any other shutdown
technique cannot outperformO1 andH2 has the pre-wakeup fea-
ture in addition to the features ofH1. Several quality measures as
shown below were obtained from the simulation.

� Hit ratio( HR): is defined as the ratio between # of correct
prediction to # of total prediction. Thus, it is not used for the
fixed time-out policies. Also, the hit ratio of proposed ap-
proach can not be directly compared to that of [3] because
they have different number of sleep states (unit: %).

� Avg. power(AP): is the average power consumption during
SPis in idle state (unit:W).

� Delay Overhead(DO): is the ratio between the increased
idle time after applying the policy and original idle
time(unit: %).

� Avg. delay / idle period(AD): is the ratio between total
increased idle time and total number of idle periods. It is a
good quality measure for instant availability (unit:sec).

� Energy(EN): is the total energy consumed during idle pe-
riods normalized to the energy consumption by best oracle
policy (unit: J).

� Efficiency(EF): is the ratio between the normalized energy
in O1 and that of each policy. It represents well the effi-
ciency of the policy compared to the ideal policy and good
for considering the power saving and performance penalty
together.

The simulation results are shown in Table 2. First, the effect of



IBM in [5]: Trace data 0 (swap and user data purpose)
O1 M1 M2 H1 H2 T1 T2 T3

HR 100 85.6 96.2 97.5 97.5 - - -
AP 0.172 0.217 0.194 0.298 0.998 0.247 0.244 0.234
DO 0.0 1.0 1.0 1.8 1.3 6.1 5.9 1.8
AD 0.0 0.227 0.236 0.428 0.294 1.440 1.393 0.413
EN 1.000 1.273 1.136 1.561 5.202 1.527 1.504 1.384
EF 1.000 0.786 0.880 0.641 0.192 0.655 0.667 0.723

IBM in [5]: Trace data 1 (swap only purpose)
O1 M1 M2 H1 H2 T1 T2 T3

HR 100 84.5 94.8 60.7 60.7 - - -
AP 0.125 0.148 0.132 0.227 1.014 0.132 0.128 0.149
DO 0.0 0.6 0.5 2.2 1.7 1.3 1.1 1.0
AD 0.0 1.525 1.420 5.891 4.678 3.530 3.093 2.741
EN 1.000 1.190 1.067 1.855 8.242 1.069 1.038 1.203
EF 1.000 0.840 0.937 0.539 0.121 0.935 0.963 0.831

AE 1.000 0.813 0.909 0.590 0.157 0.800 0.815 0.777

Toshiba in [10]: Trace data 0 (swap and user data purpose)
O1 M1 M2 H1 H2 T1 T2 T3

HR 100 91.0 99.3 97.6 97.6 - - -
AP 0.158 0.200 0.186 0.249 0.898 0.205 0.206 0.234
DO 0.0 0.6 0.5 1.0 0.7 2.1 3.0 1.5
AD 0.0 0.135 0.109 0.234 0.159 1.486 1.705 0.360
EN 1.000 1.273 1.183 1.458 5.242 1.325 1.343 1.503
EF 1.000 0.786 0.845 0.686 0.191 0.755 0.744 0.686

Toshiba in [10]: Trace data 1 (swap only purpose)
O1 M1 M2 H1 H2 T1 T2 T3

HR 100 87.6 98.0 59.9 59.9 - - -
AP 0.118 0.133 0.126 0.192 0.915 0.125 0.121 0.135
DO 0.0 0.3 0.3 1.1 0.9 0.5 0.6 0.5
AD 0.0 0.803 0.685 3.011 2.387 1.403 1.553 1.381
EN 1.000 1.131 1.071 1.645 7.819 1.065 1.032 1.150
EF 1.000 0.884 0.934 0.607 0.128 0.939 0.970 0.870

AE 1.000 0.835 0.890 0.647 0.160 0.847 0.857 0.778

*AE: Average ofEF for trace data 0 andEF for trace data 1

Table 2. Comparisons of the various policies

filter is shown fromM1 andM2. In M2, by filtering out very
short idle periods, the hit ratio is increased by about 10% and
this is also reflected in efficiency. Second,M2 shows comparable
or better hit ratio compared toH1, even thoughM2 is in harder
situation to increase the hit ratio because it has more choices than
H1. And, the correction after miss is considered as hit inH1.
Nevertheless, the efficiency ofH1 is much lower than that ofM2.
Also it is observed that the hit ratio ofH1 is drastically decreased
when trace data 1 is simulated. This is an indication that the non-
stationary property of trace data 1 is much stronger than that of
trace data 0. In contrast, the hit ratio ofM2 is decreased by about
1%. Thus, the proposed approach adapts well according to the
variation of SR. H2 has very poor efficiency even though the
hit ratio is same to that ofH1. This is because the pre-wakeup
scheme wakes upSPeven when it meets very long idle periods.
Third, in average,M2 outperforms any other time-out policy by
about 5�17%. When trace data 1 is applied, policyT2 is slightly
better thanM2(1%). This fact can be explained by the distribution
of idle intervals as shown in Figure 6. For IBM HDD, the ratio of
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idle periods inidle intervals 1 and 2in trace data 0 is two times
more than that in trace data 1. Also, for Toshiba HDD, the ratio of
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Figure 7. (a) Cumulative hit ratio(IBM HDD:
trace data 0) (b) Cumulative hit ratio(IBM
HDD: trace data 1)

Trace data 0 2nd case 3rd case
O1 M2 O1 M2

Hit ratio (%) 100.0 98.1 100.0 99.3
Avg. power(W) 0.183 0.194 0.174 0.213
Delay overhead(%) 0.0 0.9 0.0 0.9
Avg. delay / idle period(s) 0.0 0.206 0.0 0.211
Energy(J) 1.0 1.066 1.0 1.235
Efficiency 0.940 0.882 0.989 0.801

Trace data 1 2nd case 3rd case
O1 M2 O1 M2

Hit ratio (%) 100.0 96.5 100.0 97.3
Avg. power(W) 0.125 0.129 0.125 0.138
Delay overhead(%) 0.0 0.5 0.0 0.5
Avg. delay / idle period(s) 0.0 1.450 0.0 1.359
Energy(J) 1.0 1.034 1.0 1.110
Efficiency 1.0 0.967 1.0 0.901

Average Efficiency (IBM) 0.970 0.925 0.995 0.851

Table 3. Comparisons for design guide

idle periods inidle interval 1is about four times more than that in
trace data 1. It means trace data 1 rarely has intermediate length
of idle periods, In other words, the idle periods in trace data 1
are either very short or very long because it is the trace of swap
operation only. For this reason, the fixed time-out policy shows
good efficiency for trace data 1. But for trace data 0, the efficiency
of fixed time-out policy degrades rapidly because the ratio of the
intermediate length of idle periods can not be ignored, while the
proposed approach shows almost same efficiency. From these
results, we can conclude that the proposed approach has superior
reliability.

Next, we tested the adaptive speed of our proposed approach
and the stability over the time. We used the hit ratio variation over
the time for this purpose. As shown in Figure 7, the proposed
approach achieves high hit ratio after experiencing less than 1000
idle periods. Moreover, after it reaches high hit ratio, the variation
of hit ratio is very small. The variation in trace data 1 is somewhat
larger than trace data 0 because the non-stationary property of
trace data 1 is stronger than trace data 0.

Next, we performed another experiment to provide a design
guidance in deciding number of sleep states and sleep levels. For
this purpose, we simulated three different cases for IBM HDD.
First case is the same case as in the above experiment. In sec-
ond case, the standby sleep mode (power statep2) is eliminated
and in third case, the idleLP sleep mode (power statep1) is not
used. The simulation results are shown in Table 3. To avoid du-
plication with Table 2, the results of the first case is omitted in
Table 3. From the comparison of the best oracle policies, it is
shown that increasing the number of sleep states is ideally more
efficient. This is because increasing the number of sleep states
enables to handle more various lengths of idle periods. Also, it



shows choosing deeper intermediate sleep state (standby instead
of idleLP) makes it possible to save more power. This situation
depends on the distribution of idle intervals. In this experiment,
deeper sleep states are preferred, because idle periods in bothidle
intervals 1 and 2have similar ratios in the distribution. Neverthe-
less, theM2 of the second case shows better efficiency than the
third case. The reason is that third case wastes more idle periods
when filtering out impulse-like idle periods because itsI0 is much
larger than theI0 of the second case. Even though the hit ratio is
increased by a largeI0 (because of perfectly filtering out short
idle periods), the increased ratio is only a small amount because
the proposed approach already preserves high hit ratio. Thus, to
adopt the proposed approach, choosing shallower sleep states or
choosing deeper sleep state with small time-out value for filtering
is recommended. And it is also shown that increasing the number
of sleep states is not always the best choice, because it increases
the difficulty of the decision process. The results ofM2 from the
first case and second case supports this argument because their
efficiency is almost same and the hit ratio of the first case is lower
than second case.

Finally, the proposed adaptive learning tree algorithm was im-
plemented on the ACPI-compliant [18] Pentium II laptop com-
puter with a Fujitsu MHF 2043 hard disk. The operating system
running on the computer was a beta version of Microsoft Win-
dows V5. The proposed algorithm was written in C language and
easily ported on the computer thanks to the software controlled
power management architecture introduced in [19]. Also, fixed
time-out policy was implemented in the same environment for
the comparison purpose. the threshold value used for the fixed
time-out policy was 30 seconds as suggested in [20]. The work-
load trace used in this comparison was collected for two different
users and its length was about 11 hours. As expected, the hit rate
of the proposed algorithm was 94.5% for the given trace and the
average power consumption while using the proposed algorithm
was 8% less than that using the fixed time-out policy. But the
delay overhead of the proposed algorithm was 0.5% larger than
that of the fixed time-out policy. Notice that the hard disk used
in this experiment provides only a single sleep state. We believe
that both average power consumption and delay overhead of the
proposed algorithm will outperform the fixed time-out policy by
a larger margin when both algorithms are applied to the multiple
sleep state hard disk.

6 Conclusion
In this paper, we presented a novel power management policy

which is useful for multiple sleep state components. The pro-
posed approach is based on an adaptive learning tree and idle
period clustering, and it has been validated through extensive ex-
periments using two different HDD models and two kinds of real
disk trace data. The experimental results show that the proposed
approach outperforms fixed time-out policy and other prediction
methods. Also, it is shown that the prediction accuracy is reli-
able in the sense that the proposed approach is much less affected
by strongly non-stationary workloads. Moreover, the proposed
approach reaches reasonable hit ratio before experiencing more
than 1000 idle periods. Finally, we implemented the proposed
algorithm on a laptop computer with a power-manageable hard
disk and showed its feasibility in a real system environment.
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[19] Y.-H. Lu, T. Ŝimunic̀ and G. De Micheli, “Software Con-
trolled Power Management”,International Workshop on
Hardware/Software Codesign, pp.157-161, 1999

[20] P. Greenawalt, “Modeling Power Management for Hard
Disks”, International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
pp.62-65, 1994


	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers


